
I have to admit, I like the direction it's headed in. Any organization's goal (unless you are a payment processor) should be to reduce your PCI scope as much as possible, not try to bring PCI to your entire organization. This is a perfectly viable option to addressing risk that is often overlooked: ditch the asset. If you cannot afford to properly protect an asset, and you can find a way to not have to care for the asset anymore, then ditch it.
The questions I have about this specific implementation that are certainly going to have to be answered before anyone can use this to get a PCI QSA off of their back are:
1) What cryptographers have performed cryptanalysis on this "proprietary" design? Verifone's liberty to mingle the words "Triple DES" into their own marketing buzz format, "Hidden TDES", should at least concern you, if you know anything about the history of information security and the track records of proprietary encryption schemes. Since the plaintext and the ciphertext are exactly 16 digits (base 10) long and it appears that only the middle 6 digits are encrypted (see image below), this suggests that there might exist problems with randomness and other common crypto attacks. Sprinkle in the fact that credit card numbers must comply with the "Mod 10" rule (Luhn alogirthm), and I'm willing to bet a good number theorist could really reduce the possibilities of the middle 6 digits. If only the middle 6 digits are encrypted, and they have to be numbers between 0 and 9, then the probability of guessing the correct six digit number is one in a million. But the question is (and it's up to a mathematician or number theorist to answer), how many of the other 999,999 combinations of middle 6 digits, when combined with the first 6 and last 4 digits, actually satisfy the Mod 10 rule? [Especially since the "check digit" in the mod 10 credit card number rule is digit 14, which this method apparently doesn't encrypt.] I'm no mathematician, but I'm willing to bet significantly fewer than 999,999 satisfy the mod 10 rule. It's probably a sizeable cut-down on the brute-force space. If there are any other mistakes in the "H-TDES" design or implementation, it might be even easier to fill in the middle 6 gap.
It would be great to know that Verifone's design was open and peer-reviewed, instead of proprietary. I'd be very curious for someone like Bruce Schneier or Adi Shamir to spend some time reviewing it.

2) How are the keys generated, stored, and rotated? I certainly hope that all of these devices don't get hardcoded (eeprom's flashed) with a static shared key (but I wouldn't be surprised if they are). It would be nice to see something like a TPM (secure co-processor) embedded in the device. That way, we'd know there is an element of tamper resistance. It would be very bad if a study like the one the Light Blue Touchpaper guys at Cambridge University just published would detail that all of the devices share the same key (or just as bad, if all of the devices for a given retailer or bank share the same key).
It would be great if each device had its own public keypair and generated a session key with the bank's public key. This could be possible if the hardware card-swipe device sent the cardholder data to the bank directly instead of relying on a back office system to transmit it (arguably the back-end could do the transmission, provided the card swipe had access to generate a session key with the bank directly).
3) Will the PCI Security Council endorse a solution like this? (Unfortunately, this is probably the most pressing question on most organizations' minds.) If this does not take the Point of Sale system out of PCI scope, then most retailers will not embrace the solution. If the PCI Security Council looks at this correctly with an open mind, then they will seek answers to my questions #1 and #2 before answering #3. In theory, if the retailer doesn't have knowledge or possession of the decryption keys, POS would not be in PCI scope any more than the entire Internet is in PCI scope for e-tailers who use SSL.
...
Many vendors (or more accurately "payment service providers") are using "tokenization" of credit card numbers to get the sticky numbers out of e-tailers' databases and applications, which is a similar concept for e-commerce applications. A simple explanation of tokenizing a credit card number is simply creating a surrogate identifier that means nothing to anyone but the bank (service provider) and the e-tailer. The token replaces the credit card number in the e-tailer's systems, and in best-case scenarios the e-tailer doesn't even touch the card for a millisecond. [Because even a millisecond is long enough to be rooted, intercepted, and defrauded; the PCI Security Council knows that.]
It's great to see people thinking about solutions that fit the mantra: "If you don't have to keep it, then don't keep it."
[Note: all images are likely copyrighted by Verifone and are captures from their public presentation in PowerPoint PPS format here.]
...[Updated May 23, 2008: Someone pointed out that PCI only requires the middle 6 digits (to which I refer in "question 1" above) to be obscured or protected according to requirement 3.3: "Mask PAN when displayed (the first six and last four digits are the maximum number of digits to be displayed)." Hmmm... I'm not sure how that compares to the very next requirement (3.4): "Render PAN [Primary Account Number], at minimum, unreadable anywhere it is stored" Looks like all 16 digits need to be protected to me.]